Как сделать пьезоэлемент своими руками?

Изготовление пьезоэлемента излучателя

Пьезоэлектрический эффект

— способность некоторых материалов генерировать электрический заряд в ответ на приложенное механическое напряжение. Пьезоэлектрические кристаллы проявляют пьезоэлектрический эффект. Этот пьезоэлектрический эффект имеет два свойства. «>Первый — прямой пьезоэлектрический эффект, который означает, что материал обладает способностью превращать механическую деформацию в электрический заряд. Второй — обратный эффект, при котором приложенный электрический потенциал преобразуется в механическую энергию деформации. Пьезоэлемент зажигалки — образец этого эффекта.

Физические свойства пьезоэлемента

Пьезоэлектрические материалы по своей сути довольно простые и характеризуются всего лишь двумя физическими величинами – диэлектрической проницаемостью и пьезоэлектрическим модулем. От первой величины зависит емкость пьезоэлемента, а от пьезоэлектрического модуля – электрический заряд, образующийся на электродах, после того как к ним была приложена какая-то сила.

В пьезокерамике для описания процесса применяется три модуля в зависимости от расположения силы, действующей по отношению к полярности оси пьезоэлемента.

Наиболее выраженный эффект проявляется в модуле d33, в котором первая цифра индекса означает направление полярной оси вдоль оси Z традиционной системы координат, а вторая указывает на направление действующей силы вдоль этой же оси. За счет этого пьезоэлемент с величиной модуля d33 существенно превышает значение комбинаций с другими направлениями.

Прямой пьезоэффект модуля измеряется в единицах кулон/ньютон (К/Н). Именно эта величина характеризует материал, из которого он изготовлен. Независимо от приложенной силы и размеров самого элемента, при воздействии силы в 1 ньютон, на электродах будет образовываться один и тот же заряд.

Для определения напряжения на электродах существует формула: U = q/C, в которой в свою очередь q = F d33. Из данной формулы видно, что в отличие от заряда, напряжение будет зависеть от размеров пьезоэлемента, поскольку емкость С связана с площадью электродов и расстоянием между ними. Если в качестве примера взять емкость обычной зажигалки, равной 40 пикофарадам (пф), то приложенная сила в 1 Н даст напряжение 6 В. Соответственно, если сила увеличится до 1000 Н (100 кг), то полученное напряжение составит уже 6 кВ.

Пьезоэлектрический преобразователь

Пьезоэлектрическая пластина представляет собой устройство, которое использует пьезоэлектрический эффект для измерения давления, ускорения, деформации или силы путем преобразования их в электрический заряд. Пьезоэлектричество — это электричество, генерируемое пьезоэлементом, эффект которого называется пьезоэлектрическим эффектом. Это способность некоторых материалов генерировать напряжение переменного тока (переменного тока) при механическом напряжении или вибрации или вибрировать при воздействии переменного напряжения или и то и другое. Наиболее распространенным пьезоэлектрическим материалом является кварц. Этот эффект оказывает определенная керамика, соли Рошеля и другие другие твердые вещества. Когда звуковая волна ударяет по одной или обеим сторонам пластин, пластины вибрируют. Кристалл поднимает эту вибрацию, что приводит к слабому напряжению переменного тока. Следовательно, между двумя металлическими пластинами возникает напряжение переменного тока, с формой волны, подобной форме звуковых волн. И наоборот, если к пластинам подается сигнал переменного тока, это заставляет кристалл вибрировать синхронно с сигнальным напряжением. В результате металлические пластины также вибрируют и создают акустические помехи.

Практически каждый человек хотя бы один раз в жизни пользовался газовой зажигалкой, например моделью IMCO TRIPLEX, с пьезоэлементом. Это простое в исполнении и полезное в быту устройство позволяет добывать огонь всего одним щелчком. Огонь образуется из-за возгорания газа при контакте с электрическим разрядом, производимым пьезоэлементом зажигалки при нажатии на соответствующую клавишу.

При нажатии кнопки на пьезозажигалке мы слышим треск искры, далее газовая горелка разгорается.

Принцип работы

Действие пьезоэлемента наиболее четко просматривается на примере зажигалки нажимного действия. При нажатии на клавишу, зажигалка выдает целую серию искр, что свидетельствует о наиболее удачном использовании пьезогенератора в данной конструкции. Чтобы представить себе принцип работы, рекомендуется рассмотреть схему упрощенной модели этого устройства. Она выполнена в виде опоры с рычагом, создающим большое усилие, воздействующее на пьезоэлемент.

Сами элементы представляют собой сплошные цилиндрические конструкции, на торцах которых расположены электроды. Они соприкасаются друг с другом, поэтому на них воздействует одинаковая сила. Ориентация каждого пьезоэлемента между собой выполнена таким образом, чтобы электроды соприкасающихся поверхностей имели один заряд, например, положительный, а противоположные концы — заряд с другим знаком. Порядок подключения необходимо обязательно соблюдать, особенно при изготовлении подобного устройства своими руками.

Под действием рычага электроды замыкаются, и возникает электрическое параллельное соединение каждого пьезоэлемента между собой. От точки соприкосновения выводится токовод с закругленным наконечником, расположенным от металлической основы на определенном расстоянии. Во время нажатия на рычаг воздушный промежуток между основой и наконечником пробивается электрической искрой. Теперь уже понятно, как работает такая зажигалка. При дальнейшем нажатии усилие возрастает, что приводит к появлению второй и последующей искр. Это будет происходить до тех пор, пока пьезоэлементы не разрушатся полностью.

Механизм действия пьезоэлемента

Основа здесь — это блок пьезоэлемента, который отправляет от кнопки силу давления на сам пьезоэлемент. Основная составляющая пьезоэлемента — пьезокристалл. Это пластинка, вырезанная из кварцевого кристалла. Ее функция — механическую деформацию превращать в электрическое напряжение. Пластинка очень твердая, способна выдержать значительные изгибы и сжатия и выдавать высокое напряжение.

«>При плавном нажатии на кристалл, выдаваемое напряжение будет невелико, но оно будет длительным. При нажатии на кристалл с той же силой, но быстро и мгновенно — выдаваемое напряжение сильнее, но оно будет моментальным.

Поэтому для создания искры в пьезозажигалке используется это свойство кристалла. «>Для изменения силы удара с плавного на резкий в зажигалке имеется механизм: упругая пружина, которая находится под кнопкой пьезозажигалки. Нажимая на кнопку — сжимается и пружина. После нажатия на кнопку до конца — пружина отодвигает рычажок, на который она опирается. После этого пружина резко распрямляется. На другом конце пружины расположен металлический молоточек, который при раскрытии пружины с огромной скоростью ударяет в кристалл. На обратной стороне кристалла имеется металлическая подкладка, которая не дает кристаллу сдвинуться от движения молоточка.

Пьезоэлемент из зажигалки: что можно сделать? Умельцы научились применять его в ремонте (точнее, в «убийстве») смартфонов или мобильных телефонов. «>Сразу же появляется логичный вопрос: а зачем индивиду со здоровой нервной системой ломать свой смартфон?? «>Ситуация может быть разной. Кто-то желает сдать телефон по гарантии, так как он ему уже разонравился. Кто-то просто решил приколоться над дружком.

Генератор из пьезоэлемента

Многим людям знакомы пьезоэлементы, называемые иногда пищалками. Они не предназначены для генерации электричества, но подходят в учебных целях для демонстрации эффекта. Простые и дешевые. Если припаять светодиод и тихонько постучать, то получается яркое свечение. А если поставить диодный мостик, то отбор электричества можно удвоить. Только у них мизерный, но для светодиодов в самый раз. Если поставить параллельно конденсатор с выключателем, электроэнергию можно накапливать и использовать в нужный момент. Получается генератор тока. Но главная проблема в том, где взять механическую энергию для деформации пьезокристалла, чтобы не стучать пальцем. И желательно с более высокой частотой.

Пьезоэлементы продаются можно приобрести в интернет-магазине и очень дешево, от 40 рублей за 10 штук. Для экспериментов самое то.

Посмотрите товары для изобретателей. Ссылка на магазин.

Сразу подумал о звуковых колебаниях. И даже собрал маленький термо звуковой генератор из пробирки. Но несмотря на громкий звук, напряжение на кристалле было крайне низким. Для хорошего эффекта нужна более сильная деформация, например можно наклеить пьезоэлемент на линейку. Заставить вибрировать. Вот это уже другое дело! Теперь бы еще найти дармовой источник энергии для таких колебаний. Но может быть ветер.

Однако потом пришла другая идея. Заламинировал пьезоэлемент скотчем с обеих сторон, припаял длинный провод, поставил мостик и четыре светодиода. А потом опустил в ванную под тонкую струю воды, которая разбивается на капли перед самым падением на пьезоэлементе. Получилось вполне неплохо, учитывая невысокую кинетическую энергию капель. Если разместить много таких элементов на крыше дома, то хороший дождь мог бы генерировать неплохое количество электроэнергии.

Но есть ещё один интересный способ получить механические колебания. В одном из роликов автор канала показывал самобеглый шарик. Если его разогреть и просто положить на сверх ровную поверхность, а лучше в небольшую канавку, то он начинает вибрировать или подпрыгивать. Причём с высокой частотой. Получается термогенератор, который вполне можно скрестить с пьезоэлементом. Хотя вертикальное расположение не самое удачное. Ведь шарик подпрыгивает не на одной точке, а перепрыгивает с одной на другую. А это уже горизонтальное движение.

Электроника для самоделок вкитайском магазине.

Идеально было бы подвесить его между двумя свинцовыми конусами, направленными друг к другу своими вершинами. А уже в основании этих конусов поставить пьезоэлементы. И всё это на жестком основании. Шарик бьется между вершинами конусов и превращает механическую энергию в электрическую. Возможно, вы знаете какие-то другие источники механических колебаний, напишите в комментариях.

Видео канала “Игорь Белецкий”.

Ломать, не делать

«>Разряд тока, произведенный пьезоэлементом зажигалки, может сломать смартфон. Достаточно будет 8-12 раз «прощелкать» металлические разъемы гаджета, вход для наушников, оголенные части платы. При таком воздействии телефон откажется работать. При этом никаких видимых повреждений или оплавленных элементов не будет. Теперь вы можете с радостью нести сломанный гаджет в салон и требовать возврата денег. В сервисном центре ничего не должны понять.

Но пьезоэлементом газовой зажигалки нельзя вывести из строя обыкновенные «звонилки», сработанные в КНР. Не знаю почему, но даже после 50 ударов слабым током кнопочный телефон продолжил исправно функционировать.

Использование пьезоэлемента для других целей

Необходимые материалы для изготовления минипушки :

Также вы можете посмотреть и видео изготовления минипушки:

Настоящего электрошокера сделать не получится, а вот подшутить над одноклассниками — вполне реально.

Еще один способ изготовления мини электрошокера, для этого потребуется:

— пьезоэлемент (вынутый из зажигалки),

Разбираем ручку, все детали ручки должны быть металлические. Выводной провод тока пьезоэлемента подкручиваем и вставляем в стержень пасты. И далее собираем, как показано на видео.

Читайте также  Как сделать раму для минитрактора своими руками?

А дальше можете подшутить над другом — предложить ему попользоваться вашей ручкой.

Ток будет слабым, а эффект от неожиданности — очень сильным!

Пьезодатчик для акустической гитары своими руками

Если Вам нужен очень простой в повторении звукосниматель для акустической гитары в виде пьезодатчика с предусилителем, который можно сделать на скорую руку своими руками то эта статья для Вас.

Пьезодатчик с предусилителем для акустической гитары своими руками

Для создания звукоснимателя нам понадобится:

Делаем пьезодатчик с преампом для акустической гитары, пошаговая инструкция:

Схема предусилителя для гитары на одном транзисторе очень простая и собрана из доступных радиокомпонентов, для питания хватит всего одной пальчиковой батарейки Duracell, которой мне обычно хватает при активном пользовании на месяц. Усиление данного предусилителя вполне хватает и при этом нет лишних шумов. Схема была взята с форума Радиокота.

Нужно достать пьезоизлучатель, это не сложно, так как они применяются много где, от игрушек, наручных часов (например, часы Монтана), так и в играющих открытках или же можно просто купить, сейчас они продаются практически во всех радиомагазинах.

Пьезодатчик с предусилителем для акустической гитары своими руками

LiveInternetLiveInternet

  • Регистрация
  • Вход

Рубрики

  • капли колме от алкоголизма где купить (50)
  • где купить капли от алкоголизма (49)
  • капли от алкоголизма колме купить (49)
  • капли от алкоголизма отзывы (49)
  • капли колме от алкоголизма цена (49)
  • купить капли от алкоголизма (49)
  • капли от алкоголизма цена (49)
  • капли колме от алкоголизма (49)
  • капли от алкоголизма (49)
  • купить алкостоп капли цена (49)
  • где можно купить капли алкостоп (49)
  • алкостоп цена купить (49)
  • где купить капли алкостоп (49)
  • алкостоп купить в аптеке (49)
  • где можно купить алкостоп (49)
  • алкостоп где купить (49)
  • алкостоп капли купить (49)
  • алкостоп купить (49)
  • купить алкобарьер в аптеках москвы (49)
  • алкобарьер цена и отзывы где купить (49)
  • алкобарьер где купить и цена (49)
  • алкобарьер отзывы купить (49)
  • купить алкобарьер в москве (49)
  • где можно купить алкобарьер (49)
  • средство от алкоголизма купить в аптеке (49)
  • алкобарьер средство купить в аптеке (49)
  • алкобарьер средство от алкоголизма купить (49)
  • алкобарьер купить цена (49)
  • алкобарьер купить в аптеке (49)
  • где купить алкобарьер (49)
  • алкобарьер купить (49)
  • лечение алкоголизма без ведомо больного (49)
  • центр лечения алкоголизма (49)
  • методы лечения алкоголизма (49)
  • лечение больных алкоголизмом (49)
  • лечение алкоголизма без (49)
  • лечение алкоголизма в домашних условиях (49)
  • лечение алкоголизма отзывы (49)
  • клиника лечения алкоголизма (49)
  • лечение алкоголизма (49)
  • кодирование от алкоголизма в москве (49)
  • кодирование от алкоголизма на дому (49)
  • кодирование от алкоголизма в екатеринбурге (49)
  • клиники кодирования от алкоголизма (49)
  • кодирование от алкоголизма в спб (49)
  • справка о кодировании от алкоголизма (49)
  • кодирование от алкоголизма цены отзывы (49)
  • кодирование от алкоголизма уколом (49)
  • как происходит кодирование от алкоголизма (49)
  • лазерное кодирование от алкоголизма (49)
  • кодирование от алкоголизма довженко (49)
  • методы кодирования от алкоголизма (49)
  • адреса кодирования от алкоголизма (49)
  • кодирование от алкоголизма отзывы (49)
  • кодирование от алкоголизма цены (49)
  • кодирование от алкоголизма (49)

Поиск по дневнику

Подписка по e-mail

Статистика

Пьезоэлемент из зажигалки: что можно сделать?

Пьезоэлемент из зажигалки: что можно сделать?

Пьезоэлектрический эффект

— способность некоторых материалов генерировать электрический заряд в ответ на приложенное механическое напряжение. Пьезоэлектрические кристаллы проявляют пьезоэлектрический эффект. Этот пьезоэлектрический эффект имеет два свойства. «>Первый — прямой пьезоэлектрический эффект, который означает, что материал обладает способностью превращать механическую деформацию в электрический заряд. Второй — обратный эффект, при котором приложенный электрический потенциал преобразуется в механическую энергию деформации. Пьезоэлемент зажигалки — образец этого эффекта.

Пьезоэлектрический преобразователь

Пьезоэлектрическая пластина представляет собой устройство, которое использует пьезоэлектрический эффект для измерения давления, ускорения, деформации или силы путем преобразования их в электрический заряд. Пьезоэлектричество — это электричество, генерируемое пьезоэлементом, эффект которого называется пьезоэлектрическим эффектом. Это способность некоторых материалов генерировать напряжение переменного тока (переменного тока) при механическом напряжении или вибрации или вибрировать при воздействии переменного напряжения или и то и другое. Наиболее распространенным пьезоэлектрическим материалом является кварц. Этот эффект оказывает определенная керамика, соли Рошеля и другие другие твердые вещества. Когда звуковая волна ударяет по одной или обеим сторонам пластин, пластины вибрируют. Кристалл поднимает эту вибрацию, что приводит к слабому напряжению переменного тока. Следовательно, между двумя металлическими пластинами возникает напряжение переменного тока, с формой волны, подобной форме звуковых волн. И наоборот, если к пластинам подается сигнал переменного тока, это заставляет кристалл вибрировать синхронно с сигнальным напряжением. В результате металлические пластины также вибрируют и создают акустические помехи.

Практически каждый человек хотя бы один раз в жизни пользовался газовой зажигалкой, например моделью IMCO TRIPLEX, с пьезоэлементом. Это простое в исполнении и полезное в быту устройство позволяет добывать огонь всего одним щелчком. Огонь образуется из-за возгорания газа при контакте с электрическим разрядом, производимым пьезоэлементом зажигалки при нажатии на соответствующую клавишу.

При нажатии кнопки на пьезозажигалке мы слышим треск искры, далее газовая горелка разгорается.

Из чего состоит пьезозажигалка?

В пластмассовом корпусе находится блок пьзоэлемента и провода, которые используются как электроды.

Механизм действия пьезоэлемента

Основа здесь — это блок пьезоэлемента, который отправляет от кнопки силу давления на сам пьезоэлемент. Основная составляющая пьезоэлемента — пьезокристалл. Это пластинка, вырезанная из кварцевого кристалла. Ее функция — механическую деформацию превращать в электрическое напряжение. Пластинка очень твердая, способна выдержать значительные изгибы и сжатия и выдавать высокое напряжение.

«>При плавном нажатии на кристалл, выдаваемое напряжение будет невелико, но оно будет длительным. При нажатии на кристалл с той же силой, но быстро и мгновенно — выдаваемое напряжение сильнее, но оно будет моментальным.

Поэтому для создания искры в пьезозажигалке используется это свойство кристалла. «>Для изменения силы удара с плавного на резкий в зажигалке имеется механизм: упругая пружина, которая находится под кнопкой пьезозажигалки. Нажимая на кнопку — сжимается и пружина. После нажатия на кнопку до конца — пружина отодвигает рычажок, на который она опирается. После этого пружина резко распрямляется. На другом конце пружины расположен металлический молоточек, который при раскрытии пружины с огромной скоростью ударяет в кристалл. На обратной стороне кристалла имеется металлическая подкладка, которая не дает кристаллу сдвинуться от движения молоточка.

В результате получается мгновенный и сильный удар по кристаллу, который вызывает искру.

Пьезоэлемент из зажигалки: что можно сделать? Умельцы научились применять его в ремонте (точнее, в «убийстве») смартфонов или мобильных телефонов. «>Сразу же появляется логичный вопрос: а зачем индивиду со здоровой нервной системой ломать свой смартфон?? «>Ситуация может быть разной. Кто-то желает сдать телефон по гарантии, так как он ему уже разонравился. Кто-то просто решил приколоться над дружком.

Ломать, не делать

«>Разряд тока, произведенный пьезоэлементом зажигалки, может сломать смартфон. Достаточно будет 8-12 раз «прощелкать» металлические разъемы гаджета, вход для наушников, оголенные части платы. При таком воздействии телефон откажется работать. При этом никаких видимых повреждений или оплавленных элементов не будет. Теперь вы можете с радостью нести сломанный гаджет в салон и требовать возврата денег. В сервисном центре ничего не должны понять.

Но пьезоэлементом газовой зажигалки нельзя вывести из строя обыкновенные «звонилки», сработанные в КНР. Не знаю почему, но даже после 50 ударов слабым током кнопочный телефон продолжил исправно функционировать.

Использование пьезоэлемента для других целей

ОСТОРОЖНО! Не направлять в лицо, не стрелять в людей!

Необходимые материалы для изготовления минипушки :

1 . любая бутылка

2 . корпус шариковой ручки

3 . пьезоэлемент из старой зажигалки

6 . спрей для волос

Шаг 1 : Берем ручку и вынимаем колпачки с 2 — ух сторон .

Шаг 2 : Собираем минипушку .

Сначала берем бутылку от лекарства и делаем отверстие для того чтобы вставить туда корпус авторучки , далее с использованием термоклея делаем соединение герметичным .

Затем ножницами делаем два отверстия в боковой части бутылки из — под лекарства , там будут проходить провода пьезоэлемента .

Затем помещаем пьезолемент с проводами в отверстия , приклеиваем с использованием термоклея пьезоэлемент и провода к бутылке .

Шаг 3 : Испытания .

Берем спрей для волос и распыляем 2 раза по 2 — 3 сек . внутрь бутылки . Сделаем небольшие пульки из скатанных бумажек и помещаем их внутрь емкости .

Далее нажимаем на кнопку пьезоэлемента и наши бумажные пульки отлетают на достаточное расстояние !

Также вы можете посмотреть и видео изготовления минипушки:

  • можно вывезти из строя домофон ( лучше не портить общественное имущество!),
  • можно сделать минишокер, сняв предварительно защиту,

Настоящего электрошокера сделать не получится, а вот подшутить над одноклассниками — вполне реально.

Еще один способ изготовления мини электрошокера, для этого потребуется:

— пьезоэлемент (вынутый из зажигалки),

Разбираем ручку, все детали ручки должны быть металлические. Выводной провод тока пьезоэлемента подкручиваем и вставляем в стержень пасты. И далее собираем, как показано на видео.

А дальше можете подшутить над другом — предложить ему попользоваться вашей ручкой.

Ток будет слабым, а эффект от неожиданности — очень сильным!

«>
Зажигалка газовая

Пьезоэлектрический генератор электрической мощности

Ажиотаж в мире в отношении создания пьезоэлектрических источников энергии до недавнего времени не отличался высоким уровнем изобретательских предложений. Например, учёные Израиля предлагают монтировать пьезоэлементы в дорожном полотне и использовать энергию проезжающих машин. В Японии пол одного из залов метро покрыт пьезоэлементами. Эти и подобные им проекты генераторов напряжения не выдерживают никакой критики с экономической точки зрения. Причина в следующем.

За один щелчок электрозажигалки, который длится примерно 0,1 наносекунды, выделяется мощность более 2 мегаватт. То есть мощность за секунду равна 0,2 ватта. Если бы можно было сделать 1000 щелчков в секунду, то получили бы мощность 200 ватт. Мощность большая, но как сделать 1000 щелчков в секунду. Это невозможно, но вот прижать пьезоэлемент к гладкому вращающемуся колесу 20 и более тысяч раз можно, возбуждая в нём ультразвуковые колебания.

Читайте также  Как сделать фару для охоты своими руками?

Это хотя бы доказывает ниже приведенный рисунок (рис.1). Тридцать ватт отбираемой от пьезоэлемента мощности (ватт на грамм пьезоэлемента) в непрерывном режиме при напряжении 300В было достаточно, чтобы питать люминесцентную лампу. Для этого энергия вращающегося колеса преобразовывается в изгибные ультразвуковые колебания камертона выполненного на одном из концов пакета Ланжевена, и затем, за счёт пьезоэффекта, в электрические колебания высокой частоты.

То есть, с помощью пьезоэлементов можно создавать не только электрические генераторы напряжения, но и генераторы мощности.

Идея использовать пьезоэлектрический мотор в качестве генератора мощности (рис.2) долго обходилась без должного внимания. Причина в том, что, согласно этой идее, один тип колебаний принудительно должен возбуждаться в одной из частей пьезоэлемента. Эту часть назовём возбудителем. Для этого, помимо механического воздействия, используется отдельный источник питания. Второй тип колебаний должен генерироваться в другой части пьезоэлемента, за счёт принудительного вращения ротора. Эту часть пьезоэлемента назовём генератором.

Испытания опытных образцов подтвердили возможность получения энергии в генераторе. Но мощность генератора должна быть в несколько раз больше мощности отбираемой от источника питания возбудителя. Иначе в таком генераторе нет смысла. Вот как раз это долго и не получалось.

Лишь только относительно недавно Вячеслав Лавриненко, изобретатель пьезоэлектрического мотора, пенсионер, работая у себя дома после тщательной подборки материалов пьезоэлемента и контактных пар смог получить полезную мощность на нагрузке в несколько раз больше, мощности, отбираемой от дополнительного источника питания. Появилась возможность часть мощности генератора направить в возбудитель и убрать дополнительный источник. Эту задачу он решал двумя способами.

По первому способу измерял амплитуду и фазу на входе возбудителя и с помощь реактивных элементов подгоняли под такую же амплитуду и фазу напряжение на выходе генератора. То есть, как и в обычных электрических генераторах выполнялись условия баланса амплитуды и фазы. Когда эти условия были выполнены, выход замыкался с входом.

По второму способу напряжение с генератора преобразовывалось в постоянное напряжение, которым питался усилитель мощности и маломощный генератор переменного напряжения. По мере того, как удалось устойчиво получать полезную мощность в пределах 0,2 Ватта на грамм пьезоэлемента, Лавриненко обнаруживает интересный эффект, соизмеримый в физике с открытием, который он сформулировал так:

В двух, совмещённых в одном теле, резонаторах взаимно перпендикулярных акустических колебаний, с частотами резонанса смещёнными друг относительно друга для создания сдвига фаз между колебаниями при их возбуждении спонтанно генерируются взаимно поперечные колебания на частоте между упомянутыми резонансными частотами при фрикционном взаимодействии тела с другим телом, например, с вращающимся колесом.

То есть, при фрикционном взаимодействии упомянутых тел существует положительная обратная связь. Появление случайных колебаний образуют эллипс, размеры которого увеличиваются при вращении колеса. Подобным образом в электрическом усилителе напряжения, охваченной положительной обратной связью спонтанно возбуждаются электрические колебания, и энергия источника постоянного напряжения преобразуется в переменное напряжение. Зависимость этого напряжения от скорости вращения имеет вид, показанный на рис.3.

Обнаруженный эффект значительно упрощает идею создания пьезоэлектрических генераторов мощности, причем мощность в 5 ватт на грамм пьезоэлемента становится вполне реальной. Будут ли они иметь преимущества перед электромагнитными генераторами можно будет сказать только со временем, по мере их изучения, хотя о некоторых из них можно говорить уже сейчас.

Отсутствие меди и обмоток – это надёжность в условиях повышенной влажности. Отсутствие тяжёлых металлов (меди и сплавов железа) – это высокие удельные параметры. Получаемый на выходе высокочастотный сигнал, легко трансформируется под любую нагрузку. А главное преимущество, что для любых частот вращения колеса не требуется редуктор. Достаточно лишь правильно рассчитать диаметр колеса.

При невозможности применения солнечных батарей, пьезоэлектрические генераторы мощности, используя энергию, мускул или ветра, могут их заменить, например, для зарядки аккумуляторов ноутбуков, планшетов и пр. Хотя актуальность направления очевидна, для его развития требуется достаточная финансовая поддержка, которой, как и у многих проектов наших стран, пока нет.

Изготовление пьезоэлемента излучателя

6.3. Изготовление пьезоэлемента излучателя

На этой стадии осуществляют механическую обработку полученных из обжига заготовок, серебрение контактных поверхностей и поляризацию.

Механическая обработка пьезокерамических заготовок производится шлифованием на плоско- и кругло шлифовальных станках, применяемых при обработке металлов.

Шлифованием пьезокерамических заготовок можно придать им желаемую форму и получить необходимые размеры изделий. Шлифование производится «мокрым» способом, преимущественно алмазными кругами. В качестве охлаждающей жидкости используется проточная вода.

При обработке малогабаритных плоских деталей их приклеивают к шлифованным стальным плитам смесью 40% канифоли и 60% воска, смесью канифоли и парафина (1:1) или чистой канифолью. Для приклейки деталей плиту нагревают до температуры 60 — 70°С, наносят на нее тонкий слой клеящего вещества, а затем раскладывают заготовки. Плиту с наклеенными заготовками устанавливают на магнитном столе станка.

Для снятия заготовок после шлифования плиту вновь нагревают.

Цилиндрические поверхности пьезокерамики обрабатывают на круглошлифовальных станках, закрепляя детали с помощью специальных оправок.

Получить детали фасонного профиля, выполнить прошивку сквозных и глухих отверстий в пьезокерамике известными методами шли4ювания часто бывает невозможно. В последнее время успешно применяют методы ультразвуковой обработки для: 1) прошивки сквозных и глухих отверстий диаметром 5 — 40 мм в пьезокерамических пластинах толщиной 2 — 10 мм; 2) закругления острых кромок и граней радиусом 1,5 — 3 мм; 3) прошивки глухих пазов со скругленными углами; 4) нанесения рисок и различных сложных профилей на пьезокерамику.

Перечисленные операции выполняют на ультразвуковом станке с мощностью на выходе генератора 1,5 кВт и частотой колебаний вибратора 20 — 25 кГц. Для прошивки отверстий применяются ступенчатые концентраторы, изготовленные из стали 40Х.

При нанесении на деталь профилей различного вида рабочий профиль торца инструмента подбирают соответствующим заданной фигуре.

При обработке керамических заготовок с помощью ультразвука в качестве абразива используется карбид бора, а абразивная суспензия подается в зону обработки поливом.

Металлические электроды, нанесенные на поверхности пьезо-керамического элемента, должны обладать высокой электропроводностью и обеспечивать достаточный контакт и прочность сцепления с керамикой. С этой целью на поверхности пьезокерамических элементов наносят металлическое покрытие, создавая контактные поверхности. Наиболее распространенным покрытием является в настоящее время серебрение, а применяемым методом нанесения покрытия — вжигание серебра в керамику.

Возжженное в керамику серебро образует химически и механически стойкое покрытие и обеспечивает возможность припайки проводников к электродам обычными припоями с введением в них 2 — 3% серебра.

Прочность сцепления серебряного покрытия с керамикой в большой степени зависит от качества подготовки покрываемых поверхностей. Наиболее прогрессивным методом очистки поверхности керамики является ультразвуковая обработка. При этом методе очистки пьезокерамические элементы помещают в моющий раствор, нагретый до температуры 60 — 80°С и подвергают воздействию ультразвука в течение 5 — 7 мин. После этого элементы промывают в горячен воде н сушат в термостате при температуре 100 — 110°С в течение 1 — 2 ч.

При отсутствии ультразвуковых установок элементы перед серебрением можно очищать промывкой в горячей мыльной воде при температуре 50—70°С с последующей промывкой в проточной воде и прокаливанием при температуре 600 — 650°С в муфельной печи. После очистки непосредственно перед нанесением серебряной пасты поверхности элемента протирают спиртом.

Порядок приготовления пасты: навески окиси серебра, борнокислого свинца и окиси висмута смешивают и тщательно растирают в шаровой мельнице или фарфоровой ступке в течение 40 — 50 мин; в полученную смесь вводят связку, состоящую из раствора канифоли в скипидаре и касторового масла; снова перемешивают пасту в шаровой мельнице пли ступке.

Приготовленная паста должна храниться в герметично закрываемых сосудах.

Нанесение серебряной пасты на поверхности элементов из пьезокерамики можно производить пульверизацией, кистью вручную или на приспособлениях и другими способами. Процесс нанесения пасты пульверизацией легко поддается механизации, однако недостатком его являются большие потери серебра.

Независимо от метода покрытия паста должна быть нанесена равномерным слоем. После нанесения пасты элементы просушиваются на воздухе в течение 1 — 2 ч.

Вжигание серебра в керамику — заключительная операция нанесения электродов. Для проведения ее детали должны быть свободно уложены для загрузки в электрическую туннельную печь. Процесс вжигания производится при температуре 830 — 850°С. При постепенном повышении температуры до 200 — 300°С происходит выгорание органических пластификаторов, входящих в состав пасты (канифоль, касторовое масло и др.), а затем, при температуре 450 — 510°С, окись серебра восстанавливается до металлического серебра (2АgO®4Ag+O2).

Наличие плавней в пасте значительно снижает температуру плавления серебра и обеспечивает высокую прочность сцепления кристаллов серебра между собой и с керамикой.

Один цикл вжигания серебра дает слой серебра на керамике, равный 4 – 6 мкм. Для получения достаточного для припайки вы­водов слоя серебра нанесение пасты и вжигание серебра производится трижды.

Поляризацией завершается изготовление пьезокерамических элементов. Как уже указывалось, в неполяризованной керамике отдельные хаотически расположенные кристаллики имеют области (домены) с различным направлением электрических моментов. Под влиянием сильного внешнего электрического поля происходит переориентация электрических моментов отдельных доменов кристалликов и появляется результирующая поляризация образца. После снятия внешнего поля наведенная поляризация сохраняется.

Поляризация пьезокерамики производится на высоковольтных установках постоянного тока с применением специальных электродов, обеспечивающих создание равномерного электрического поля. Поляризация может осуществляться как на воздухе, так и в различных электроизоляционных жидкостях — касторовом масле, трансформаторном масле, силиконовой жидкости и др.

Пьезокерамика из титаната бария поляризуется при температуре 110 — 115°С и напряженности электрического поля 6 кВ/см.

После поляризации производится замер электрофизических параметров пьезокерамики.

1. Ханке Х.-И., Фабиан Х. Технология производства РЭА: Пер. с нем./Под ред. В.Н. Черняева. — М.: Энергия. 1980.-464с.,ил.

Читайте также  Как сделать шумоизоляцию авто своими руками?

1. Головня В.Г. Технология деталей радиоаппаратуры. — М.: Радио и связь,1983. — 296с., ил.

2. Глозман И.А. Пьезокерамика.М.: Энергия. 1967.-272с,ил.

4.Справочник Пьезокерамические преобразователи под ред. Пугачова С. И., Л.:Судостроение, 1984.

5. Дианов В.Ф., Дюдин Б.В. Физические методы и технология неразрушающего контроля материалов, сварных соединений и изделий ч.1.Ученое пособие. Таганрог. ТРТУ. 1995.

6. Методические указания № 2358. Под ред. Дианова В.Ф. Таганрог ТРТУ. 1996

Falconist. Мемуары

Балансный предусилитель для пьезозвукоснимателя

Запись опубликована Falconist · 7 июля 2019

2 129 просмотров

Намедни была опубликована моя статья [1], «изюминкой» которой явилось задание смещения на одну из баз дифференциального каскада, равное половине питания подаваемого на микрофон, непосредственно с управляющего электрода шунтового регулятора TL431. Описываемая ниже схема построена по подобному же принципу, но из-за отсутствия в ней особой оригинальности я посчитал нецелесообразным оформлять её в виде статьи, пускай будет просто как запись в блоге.

Разработка основывалась на запросе ансамбля струнных народных инструментов на комплект звукоснимателей для них. Предложенный для апробации Предусилитель для пьезоэлектрического звукоснимателя[2] удовлетворил заказчика по качеству, Но вызвал возражения в плане затратности снабжения автономными источниками питания (гальваническими батарейками). При этом ансамбль был оснащен тремя 16-канальными микшерами с фантомным питанием микрофонных линеек, что, естественно, заставило задуматься в направлении использовать эту возможность.

За основу разработки была взята схема симметрирующего усилителя для электретного микрофона М.Сапожникова [3], переделанная под пьезозвукосниматель, однако, при ее апробации выяснилось, что выходной сигнал переусиливается, приводя к клиппированию микрофонных входов даже при минимальном усилении. Это заставило ввести в коллекторные цепи транзисторов дополнительные резисторы R2 и R3, обеспечивающие снижение усиления примерно в 4 раза.

Решение неоднозначное, но апробация «стандартного» приема снижения усиления дифкаскада путем уменьшения номинала эмиттерного резистора R1 не дала должного эффекта, поскольку линии передачи сигнала к пульту одновременно являются линиями подачи питания к схеме. Есть еще один неочевидный фактор — это определенные сложности с подбором транзисторов в SMD корпусах. Дело в том, что их коллекторно-эмиттерное напряжение должно быть не менее 50 В (а лучше с запасом 60 В). Кроме ограниченного ассортимента, такие относительно «высоковольтные» транзисторы сложно отнести к малошумящим, тогда, как 40-вольтовые вполне укладываются в обозначенные требования.

При разработке была апробирована схема с незаземленным пьезодатчиком:

Однако, она не продемонстрировала каких-либо качественных преимуществ, а повышенный вдвое уровень сигнала и вообще был ни к чему. Если его приходится и так снижать. Кроме того, в качестве стабилизатора базовых потенциалов была апробирована схема с обратносмещенным эмиттерно-базовым переходом диффузионного транзистора (КТ315), но она оказалась чрезмерно шумной. Так что стабилизатор на TL431 оказался оптимальным как по шумовым свойствам, так и по стабильности.

В качестве пьезодатчиков использовались разъединенные половинки от пьезозуммеров ЗП-1, каждая из которых содержала по пьезокристаллу.

Сама схема выполнена на SMD-деталях на круглой печатной плате по размерам пьезодатчика.

Поскольку в TL431 от разных производителей цоколевка управляющего электрода и катода бывает зеркальной [4], в приаттаченном файле с ПП имеются две вкладки с разной распайкой компонентов стабилизатора.

Возможно также применение пьезоизлучателей типа от электронных часов «Montana» с кольцевой прокладкой по высоте SMD-компонентов (внизу):

Готовый датчик соединяется с гнездом под джек («палец») проводами, дабы шевеление соединительного кабеля не отражалось на датчике.

Для экспериментальной проверки датчик и гнездо крепились к инструменту через двухсторонний скотч.

Естественно, размещение датчика на корпусе инструмента следует подбирать экспериментально.

Ну и, наконец, приаттачен также файл с записанным звуком гитары.

Литература:

1. Falconist Балансный предусилитель электретного микрофона / Falconist.– http://cxem.net/sound/soundpred/soundpred44.php

3. Сапожников, М. Симметрирующий усилитель для электретного микрофона / М. Сапожников.– Радио.– 2004, №7.– С. 21.

Простая схема увеличения акустического выхода пьезоэлектрического преобразователя

Knowles SPW2430HR5H-B

Для увеличения акустической мощности пьезодинамика или ультразвукового преобразователя было предложено много разных идей. Большинство из них основано на довольно сложных схемах, увеличивающих общую стоимость решения; например, повышение низкого напряжения питания логики до более высокого напряжения или использование H-моста.

Напротив, в этой статье показано, как можно увеличить акустическую мощность пьезоэлектрического преобразователя, минимизировав количество деталей и стоимость. Прежде чем мы приступим к обсуждению нового подхода, давайте рассмотрим некоторые из наиболее часто используемых пьезоакустических схем и их недостатки.

Простейшая схема драйвера пьезоэлемента состоит из преобразователя и ключевого транзистора (Рисунок 1). Напряжение на преобразователе не может быть больше напряжения источника питания, которое и определяет верхний предел акустической мощности. Резистор R2 служит для разряда емкости преобразователя. Постоянная времени RC должна быть короткой относительно периода резонансной частоты преобразователя. Низкие сопротивления резисторов снижают электрический КПД при гашении механического (акустического) резонанса преобразователя, что, конечно, снижает акустическую эффективность.

Рисунок 1. Хотя такая схема управления пьезоизлучателем проста,
она очень неэффективна.

Самым распространенным способом усовершенствования является замена R2 дросселем, как показано на Рисунке 2.

Рисунок 2. Замена резистора R2 дросселем увеличивает
акустическую мощность и КПД.

Величину индуктивности часто выбирают такой, чтобы получить электрический резонанс с емкостью преобразователя (излучателя) при акустическом резонансе преобразователя. Этот подход может обеспечить более высокую акустическую мощность, чем параллельный резистор, однако он оставляет еще множество возможностей для улучшения. В лучшем случае пиковое напряжение на преобразователе может достигать 40 В, тогда как более типичное значение при напряжении питания 5 В составляет 20 В.

Это связано с тем, что переход коллектор-база транзистора смещен в прямом направлении во время отрицательной полуволны напряжения на параллельном резонансном контуре, образованном индуктивностью и емкостью преобразователя, что ограничивает размах напряжения, уменьшая акустический выход.

Рисунок 3. Использование диода может устранить
​отрицательные выбросы.

Добавление диода изолирует переход коллектор эмиттер (или, если используется MOSFET, переход паразитного диода) от этой отрицательной полуволны, обеспечивая намного больший размах напряжения на преобразователе и увеличивая акустическую мощность (Рисунок 3). Хотя прямое напряжение диода снижает приложенное напряжение питания, повышенное напряжение при резонансе более чем компенсирует эту небольшую потерю.

Чтобы добиться каких-либо дальнейших улучшений, мы должны учесть, что на самом деле в этой небольшой системе существуют два резонанса:

  1. Акустический резонанс преобразователя, механический и объемный резонансы.
  2. Электрический резонанс индуктивности и емкости преобразователя.

Частота электрического резонанса не обязательно должна совпадать с частотой акустического резонанса. На самом деле, если она примерно в 2 раза больше, чем частота акустического резонанса, пиковое напряжение на преобразователе может быть значительно увеличено.

Рисунок 4. Иллюстрация поведения схемы в реальных условиях.

Это иллюстрируется Рисунком 4, где осциллограммы получены при следующих параметрах схемы:

  1. Напряжение источника питания: 5 В DC;
  2. Индуктивность: L1 – 3.2 мГн;
  3. Емкость пьезопреобразователя: 2 нФ;
  4. Частота источника сигнала (40 кГц) равна резонансной частоте излучателя;
  5. Коэффициент заполнения импульсов источника сигнала подобран так, чтобы исключить большие выбросы тока при включении.

Обратите внимание, что пункт 5 обозначает потенциальную проблему, скрывающуюся в этом новом решении, которую необходимо устранить. Если источник сигнала может включать транзистор после того, как напряжение преобразователя становится положительным, будет происходить мощный короткий выброс тока, который способен снизить электрический КПД и потенциально со временем разрушить транзистор. Увеличение коэффициента заполнения, чтобы транзистор включался, когда резонансное напряжение слегка отрицательное, позволяет устранить этот выброс.

После того, как мы все обсудили, давайте посмотрим, как наша схема ведет себя в реальной жизни, используя для этого удобный четырехканальный интеллектуальный осциллограф:

  • Желтый – управляющее напряжение с пиковым значением 5 В, частотой 40 кГц и коэффициентом заполнения примерно 48%;
  • Фиолетовый – напряжение на преобразователе при электрическом резонансе: 92 В пик-пик, 80 кГц;
  • Зеленый – эмиттерный ток транзистора с пиковым уровнем примерно 80 мА и частотой 40 кГц;
  • Синий – акустическая мощность преобразователя, измеренная МЭМС микрофоном.

Высокое пиковое напряжение на преобразователе достигается за счет использования дросселя с индуктивностью меньшей, чем требуется для резонанса на частоте 40 кГц, что позволяет току возрастать примерно в два раза быстрее. В рассматриваемом примере это обеспечивает удвоенный ток для «зарядки» магнитного поля дросселя.

В данной системе это приводит к большему смещению поверхности преобразователя, и, соответственно, увеличивает акустическую мощность.

Эту статью не следует рассматривать как исчерпывающий трактат по резонансным схемам. Она просто демонстрирует процедуру, позволяющую с помощью очень простой и недорогой схемы увеличить акустическую мощность любого резонансного пьезоэлектрического преобразователя или излучателя.

Кратко эту процедуру можно изложить следующим образом:

  1. Определяем частоту акустического резонанса преобразователя;
  2. Формируем последовательность управляющих импульсов такой же частоты, начиная с коэффициента заполнения 50%;
  3. При необходимости регулируем коэффициент заполнения, чтобы убрать выбросы тока при включении;
  4. Определяем значение емкости преобразователя;
  5. Выбираем такое значение индуктивности, с которым частота электрического резонанса будет примерно вдвое выше частоты акустического резонанса.

Смоделировать представленную здесь акустическую/ электрическую схему в симуляторе может быть непросто, поскольку преобразователь содержит два или более потенциально резонансных элемента. К ним относятся механически резонанс преобразовательного элемента, акустический резонанс корпуса преобразователя (называемый резонансом Гельмгольца) и, конечно же, электрический резонанс емкости преобразователя с внешней индуктивностью.

Акустическая нагрузка излучением из порта преобразователя или его диафрагмы добавляет еще одну сложность к моделированию. Простое электрическое моделирование этой схемы дает на преобразователе 240 В пик-пик, что больше удвоенного напряжения, полученного в реальной схеме. Причиной большей части потерь, снижающих пиковое напряжение преобразователя в этой системе по сравнению с моделируемыми результатами, может быть акустическая нагрузка.

С помощью этой простой процедуры можно с минимальными затратами времени и сил легко добиться максимальной акустической мощности преобразователя.